Rabu, 23 April 2014

UJI ASUMSI KLASIK (PRAKTEK SPSS)

A.  Deskripsi Objek Penelitian
Penelitian menggunakan periode 2007 sampai dengan 2009 sehingga perusahaan yang digunakan adalah perusahaan perbankan yang telah aktif diperdagangkan dalam periode tersebut. Terdapat 28 perusahaan perbankan yang terdaftar di Bursa Efek Indonesia pada tahun 2009, akan tetapi terdapat 3 perusahaan yang baru listing pada tahun 2007, yaitu PT Bank Agroniaga Tbk., PT Bank Capital Indonesia Tbk., dan PT Bank Windu Kentjana International Tbk. Demikian juga terdapat 2 buah perusahaan yang baru listing di BEI tahun 2008 yaitu PT Bank Ekonomi Raharja Tbk., dan PT Bank Tabungan Pensiunan Nasional Tbk., sehingga hanya terdapat 23 perusahaan perbankan yang berturut-turut memperdagangkan sahamnya dari tahun 2007 sampai dengan tahun 2009. Dari 23 perusahaan yang memperdagangkan sahamnya berturut-turut antara tahun 2007 sampai dengan 2009 terdapat 8 perusahaan yang tidak mencantumkan data variabel penelitian secara lengkap yaitu data piutang perusahaan yang dipergunakan untuk menghitung discretionary accrual. Dengan demikian sampel penelitian adalah sebanyak 15 perusahaan.
B. Analisis Data
 

1. Uji Asumsi Klasik
Analisis regresi linear berganda memerlukan beberapa asumsi agar model tersebut layak dipergunakan. Asumsi yang dipergunakan dalam penelitian ini adalah uji normalitas, uji multikolinearitas, uji heteroskedastisitas dan uji autokorelasi.
 
a.  Uji Normalitas
Uji normalitas data dipergunakan untuk menentukan apakah data terdistribusi secara normal atau tidak. Uji normalitas yang dipergunakan adalah plot grafik di mana asumsi normalitas terpenuhi jika titik-titik pada grafik mendekati sumbu diagonalnya.
Gambar 1
Uji Normalitas
Gambar menunjukkan bahwa titik-titik pada grafik telah mendekati atau hampir berhimpit dengan sumbu diagonal atau membentuk sudut 45 derajad dengan garis mendatar. Interpretasinya adalah bahwa nilai residual pada model penelitian telah terdistribusi secara normal. Untuk memperkuat hasil pengujian tersebut dipergunakan uji Kolmogorov-Smirnov yaitu sebagai berikut:
Tabel 1
Uji Normalitas dengan Kolmogorov-Smirnov
Tampak bahwa nilai signifikansi adalah sebesar 0,868 > 0,05 yang menunjukkan bahwa nilai residual telah terdistribusi secara normal. Hasil analisis awal menunjukkan adanya data outliers yaitu data yang menyimpang terlalu jauh dari data yang lain sehingga harus dikeluarkan dari model penelitian. Berikut adalah identifikasi data outlier pada model dalam penelitian ini:
Tabel 2
Identifikasi Data Outliers
Tampak bahwa terdapat 1 buah data outliers yaitu data ke-8 sehingga data tersebut dikeluarkan dari model penelitian dan jumlah data penelitian menjadi 44 buah. Dengan mengeluarkan satu buah data tersebut, masih terdapat 1 buah lagi data outliers yaitu sebagai berikut:
Tabel 3
Identifikasi Data Outliers 2
Data ke-23 menjadi outliers setelah data ke-8 dikeluarkan, dengan demikian, data ke-23 juga dikeluarkan dari model sehingga tidak ada lagi data outliers. Dengan mengeluarkan dua buah data outliers maka diperoleh grafik P Plot sebagai berikut:
Gambar 2
Uji Normalitas Tanpa Data Outliers
Gambar menunjukkan bahwa titik-titik pada grafik telah mendekati atau hampir berhimpit dengan sumbu diagonal atau membentuk sudut 45 derajad dengan garis mendatar. Interpretasinya adalah bahwa nilai residual pada model penelitian telah terdistribusi secara normal. Untuk memperkuat hasil pengujian tersebut dipergunakan uji Kolmogorov-Smirnov yaitu sebagai berikut:
Tabel 4
Uji Normalitas dengan Kolmogorov-Smirnov Tanpa Outliers
Tampak bahwa dengan 43 data maka nilai signifikansi adalah sebesar 0,884 > 0,05 yang menunjukkan bahwa nilai residual telah terdistribusi secara normal.

b. Uji Multikolinearitas
Uji multikolinearitas dilakukan dengan menggunakan nilai variance inflation factor (VIF). Model dinyatakan terbebas dari gangguan multikolinearitas jika mempunyai nilai VIF di bawah 10 atau tolerance di atas 0,1. Berikut adalah uji Multikolinearitas dalam penelitian ini:
Tabel 5
Uji Multikolinearitas
Tabel di atas memberikan semua nilai VIF di bawah 10 atau nilai tolerance di atas 0,1. Berarti tidak terdapat gejala multikolinearitas pada model dalam penelitian ini.

c. Uji Heteroskedastisitas
Uji Heteroskedastisitas dilakukan dengan memplotkan grafik antara SRESID dengan ZPRED di mana gangguan heteroskedastisitas akan tampak dengan adanya pola tertentu pada grafik. Berikut adalah uji heteroskedastisitas pada keempat model dalam penelitian ini:
Gambar 3
Uji Heteroskedastisitas

Tampak pada diagram di atas bahwa model penelitian tidak mempunyai gangguan heteroskedastisitas karena tidak ada pola tertentu pada grafik. Titik-titik pada grafik relatif menyebar baik di atas sumbu nol maupun di bawah sumbu nol.

d. Uji Autokorelasi
Berikut adalah nilai Durbin-Watson pada model dalam penelitian ini:
Tabel 6
Uji Autokorelasi
Adapun nilai dU untuk 5 buah variabel dengan 43 data pada taraf 5% adalah sebesar 1,780. Tampak bahwa 0 < dW < dU yang masuk pada kategori no decision. Untuk memperkuat hasil tersebut digunakan uji Run, di mana gangguan autokorelasi terjadi jika signifikansi di bawah 0,05. Berikut adalah uji autokorelasi dengan Run test:
Tabel 7
Uji Autokorelasi dengan Run Test
Tampak bahwa signifikansi adalah sebesar 0,760 > 0,05 yang menunjukkan bahwa tidak terjadi gangguan autokorelasi pada model penelitian.

Tidak ada komentar:

Posting Komentar

Saya Mengharapkan Saran & Kritik Yang Bersifat Konstruktif Untuk Perbaikan Blogger FE UP Kampus Poka dan Materi Yang Ada di Blogger ini. WASSALAM !